

How to design clinical studies for small populations

Lisa A. Kammerman, Ph.D. Regulatory Statistics Consultant Kammerman Consulting, LLC

CDD Annual Forum 05 November 2019

Introduction

- What information FDA needs to approve a new treatment
- How to select study endpoints
- A few important features of clinical studies

Everything you wanted to know ... in 10 minutes or less!

The 'perfect' CDD design overcomes two hurdles:

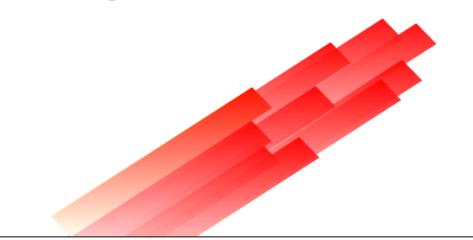
Small population Regulatory approval

The CDD population is rare

Orphan drug designation <200,000 (US) 0.05% (EMA)

CDD world-wide > 1,000

Single study needs to support regulatory approval



Reliance on a single study ...

Guidance for Industry

Providing Clinical Evidence of Effectiveness for Human Drug and Biological Products

"Leaves little room for study imperfection"

appropriately designed minimal possibility of bias clear prior hypothesis

Source: Providing Clinical Evidence of Effectiveness for Human Drug and Biological Products. May 1998. (https://www.fda.gov/media/71655/download)

How to show treatment is effective

FDA requires

Substantial evidence

Adequate and well-controlled study (or studies)

Substantial evidence must support effectiveness claim

"... adequate and well-controlled investigations provide the primary basis for determining whether there is "substantial evidence" ..."

"Uncontrolled studies or partially controlled studies are not acceptable as the sole basis ..."

Source: 21 CFR 314.126.

Two important adequate and well-controlled study (AWCS) characteristics...

Design permits a valid comparison with a control

Methods of assessment of subjects' response are well-defined and reliable

AWCS can use these 5 controls

Placebo **concurrent** control

Dose-comparison **concurrent** control

No treatment **concurrent** control

Active treatment concurrent control

Historical control

Source: 21 CFR 314.126.

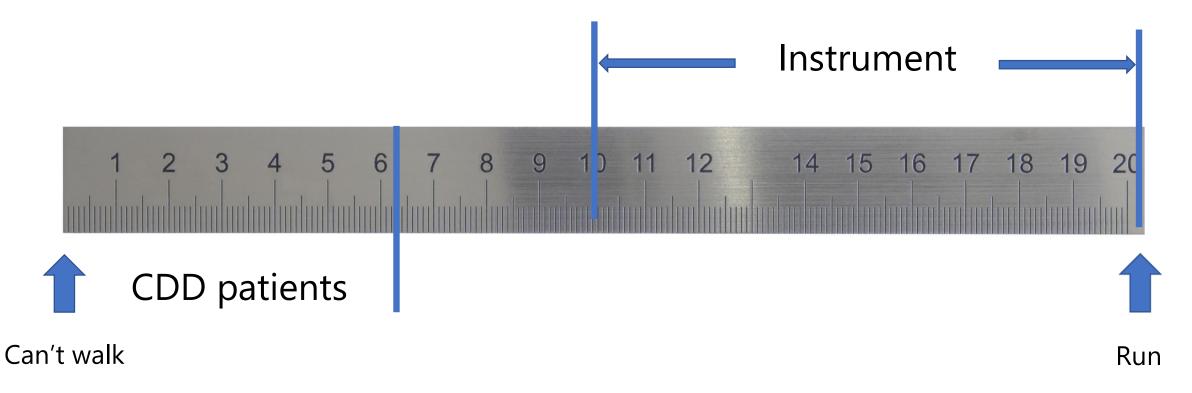
"Methods of assessment" are part of the endpoint pathway

1. Instruments 2. Assessments 3. Endpoints

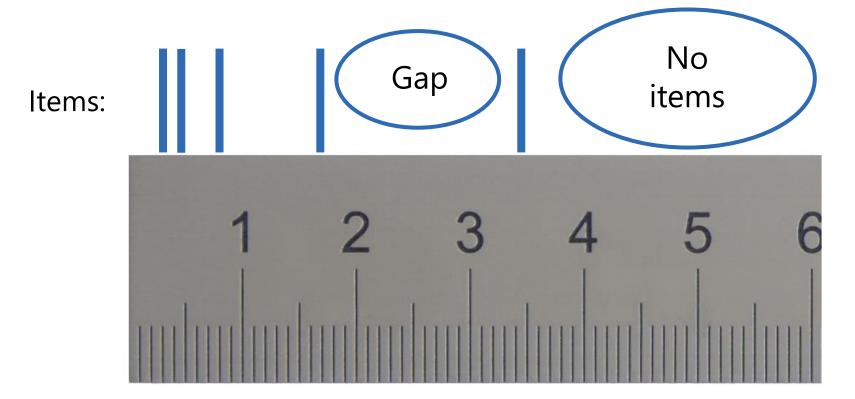
What to consider when you select an instrument

Instrument appropriate for ...

- >CDD
- **≻**Severity
- ≻Age


Key features to consider ...

- **≻**Concepts
- ➤ Recall period
- ➤ Ability to detect change
 - **≻**Sensitive
 - ➤ Overlaps population
 - ➤ Child development
- > Floor/ceiling effects



Ensure instrument targets study population

Does scale overlap population: No

Ensure instrument targets study population

- Instrument (items)
 need to cover
 entire range
- May need to restrict study population

Slide 17

Can't walk

Endpoints require a scientific question

- > Common question: Is Treatment A more effective than Control?
- Needs more specificity
 - Population
 - Instrument
 - Endpoint
 - Intercurrent events
 - Start another treatment in addition to current treatment
 - Start another treatment, stop current treatment

A word on composite endpoints

- Can combine COA and non-COA endpoints
- The components are equally important
- Each component moves in the same direction

Example: Spinzara – Hammersmith Infant Neurological Examination-Section 2 (HINE-2))

- ≥2 pt increase (or max score 4) in ability to kick OR
 ≥1 pt increase certain movements (6 categories)
- AND improvement in more motor milestones than worsening

Design needs to align with scientific question

Spacing of assessments

- Align frequency and duration with scientific question
- Infrequent assessments may not estimate time of improvement.

Age range of patients

- Need to combine age-specific instrument assessments
- May need to limit age of patients in order to analyze

Enroll patients who can improve

Sample size calculations require assumptions

- Prior to study start
 - Variance
 - Difference between treatments
- > At interim analysis
 - Check assumptions
 - Upsize if necessary

Two upcoming meetings – live streamed

12 November 2019

ADEPT 6 Workshop: Pediatric Clinical Trial Endpoints for Rare Diseases

https://www.eventbrite.com/e/adept-6-workshop-pediatric-clinical-trial-endpoints-for-rare-diseases-registration-67523118465

6 December 2019:

Patient-Focused Drug Development: Guidance 4 – Incorporating Clinical Outcome Assessments into Endpoints for Regulatory Decision Making

https://www.fda.gov/drugs/development-approval-process-drugs/public-workshop-patient-focused-drug-development-guidance-4-incorporating-clinical-outcome

Summary

- > Get study design right the first time
- Regulatory approvals require
 - Adequate and well-controlled studies
 - Substantial evidence
- Use appropriate instruments and assessments
- The scientific question helps define the study endpoint
- Designing a study is difficult when limited information available for assumptions

FDA Guidance Documents:

- Praft Guidance for Industry, Rare Diseases: Common Issues in Drug Development, 2019. (https://www.fda.gov/media/119757/download)
- Providing Clinical Evidence of Effectiveness for Human Drug and Biological Products. May 1998 (https://www.fda.gov/media/71655/download)
- Praft Adaptive Design Clinical Trials for Drugs and Biologics, 2018. (https://www.fda.gov/media/78495/download)
- Foundance for Industry Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims, 2009. https://www.fda.gov/media/77832/download

Definition of adequate and well-controlled studies

21 CFR 314.126: (https://www.ecfr.gov/cgi-bin/text-idx?SID=784ef3c18f0a3123c7ee637fd47aa4dc&mc=true&node=se21.5.314_1126&rgn=div8)

FDA's Complex Innovative Trial Design Pilot Program

(https://www.fda.gov/drugs/development-resources/complex-innovative-trial-designs-pilot-program)

Discussion Document for Patient-Focused Drug Development Public 2 Workshop on Guidance 3: 3 SELECT, DEVELOP OR MODIFY FIT-FOR-PURPOSE 4 CLINICAL OUTCOME ASSESSMENTS https://www.fda.gov/media/116277/download

Master protocols:

Janet Woodcock, M.D. and Lisa M. LaVange, Ph.D., "Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both", NEJM 2017. (https://www.nejm.org/doi/10.1056/NEJMra1510062)

Rare disease publications

- Simon Day, et. al., "Recommendations for the design of small population clinical trials", Orphanet Journal of Rare Diseases, 2018. (https://ojrd.biomedcentral.com/articles/10.1186/s13023-018-0931-2)
- Thomas Morel and Stefan J. Cano, "Measuring what matters to rare disease patients reflections on the work by the IRDiRC taskforce on patient-centered outcome measures", Orphanet Journal of Rare Diseases, 2017. (https://ojrd.biomedcentral.com/track/pdf/10.1186/s13023-017-0718-x)

Adaptive design examples for rare diseases

Miller, Eva, Paul Gallo, Weili He, Lisa A. Kammerman, Kenneth Koury, Jeff Maca, Qi Jiang et al. "DIA's Adaptive Design Scientific Working Group (ADSWG) Best Practices Case Studies for "Less Well-understood" Adaptive Designs." Therapeutic innovation & regulatory science 51, no. 1 (2017): 77-88. (https://journals.sagepub.com/doi/pdf/10.1177/2168479016665434)

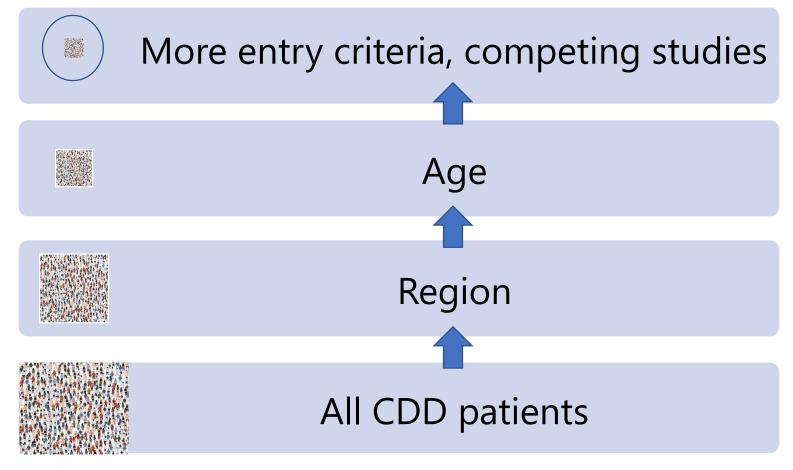
Assessing Neurocognitive Outcomes in Inborn Errors of Metabolism

Food and Drug Administration, Proceedings of Meeting held on April 16, 2015.

https://wayback.archive-

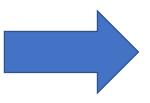
it.org/7993/20170112081133/http://www.fda.gov/downloads/Drugs/NewsEvents/UCM493766.pdfih.gov/pmc/articles/PMC4895194/

Thank you!


Lisa Kammerman

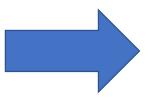
lisa@kammerman.com www.kammerman.com +1 240 760 2512

Bonus slides



Entry criteria and competing studies diminish the # of eligible patients

Scientific question



Patient-level endpoint

Between group difference in	then patient-level endpoint
Mean change from baseline to a specific visit	Change from baseline to a specific visit
Mean outcome at a specific visit	Outcome at a specific visit
Mean outcome at a set of specified visits (e.g., Visit 1, Visit 2, etc.)	Time profile (vector of outcomes at specific visits)
The area under the mean curves	Time profile (vector of outcomes at specific visits)

Scientific question

Patient-level endpoint

Between group difference in	then patient-level endpoint
Proportion of responders	Responder (Yes/No) at a specific visit
Time-to-deterioration	Deteriorated (Yes/No) and time of response
Time-to-improvement	Improved (Yes/No) and time of response

